Embedding 3D Objects into NCL Multimedia Presentations

Roberto Gerson de A. Azevedo
Luiz Fernando Gomes Soares
Outline

• Introduction
• Embedding 3D Objects into NCL documents
• Implementation
• Examples
• Conclusions
• Future Work
Terrestrial Digital TV Systems
Terrestrial Digital TV Systems

About 600 millions of users
Terrestrial Digital TV Middlewares

- **J.200**: Worldwide common core – Application environment for digital interactive television services

- **J.201**: Harmonization of declarative content format for interactive TV applications

- **J.202**: Harmonization of procedural content formats for interactive TV applications

System Architecture

- **Europe (DVB)**: MHP 1.0, DVB - HTML
- **USA (ATSC)**: ACAP-J, ACAP-X
- **Japan (ARIB)**: ARIB-AE (STD-B23), BML (STD-B24)
- **Brasil (ISDB-TB)**: Ginga-J, Ginga-NCL
NCL – Nested Context Language

• An XML-based declarative language that supports:
 – Media Synchronization
 – Content and presentation adaptation
 – Multiple devices
 • Distributed Multimedia Presentation
 – Live editing commands
• And it is royalties-free!
NCL – Nested Context Language

Java

Lua

Start

onBegin

onEnd

Stop

Start

Stop

Start

onSelection

Stop

Start

Web 3D 2012, Los Angeles
NCL – Nested Context Language

Web 3D 2012, Los Angeles
NCL – Nested Context Language
NCL – Nested Context Language

<?xml version="1.0" encoding="ISO-8859-1"?>
<ncl id="testHeightTop" xmlns="http://www.ncl.org.br/NCL3.0/EDTVProfile">
 <head> ...
 </head>
 <body>
 <port id="p1" component="mainVideo"/>

 <media id="mainVideo" src="media/mainVideo.mp4">
 <property name="width" value="100%"/>
 <property name="height" value="100%"/>
 <area id="firstTrack" begin="3s" end="20s"/>
 </media>

 <media id="img1" src="1.png">
 ...
 </media>

 <link id="firstLink" xconnector="onBeginStart">
 <bind role="onBegin" component="mainVideo"/>
 <bind role="start" component="img1"/>
 </link>

 </body>
</ncl>
Embedding 3D Objects into NCL
Embedding 3D Objects into NCL

Web 3D 2012, Los Angeles
Embedding 3D Objects into NCL

Web 3D 2012, Los Angeles
Embedding 3D Objects into NCL
Embedding 3D Objects into NCL

Diagram showing the integration of 3D objects into NCL via Java and Lua programming languages.
Embedding 3D Objects into NCL Documents

• Simple 3D Objects
 – Unstructured Mesh-based
 – From the NCL point of view, we have no access to its internal structures
 – Example: Wavefront .OBJ file

• Composite 3D Objects
 – Usually scene-graph based
 – From the NCL, we can define content anchors and property anchors binding to its internal content (*e.g.* Nodes).
 – Examples: eXtensible 3D
Embedding X3D Objects into NCL Documents

- Content anchor definition:
 - Every node with a unique identifier in the X3D document is able to be accessed by content anchors from NCL.

(a) X3D Scene Graph (myScene.x3d)

```xml
1. <head>
2.  <meta name="title" content="myScene.x3d"/>
3. </head>
4. <Scene>
5.  <Transform translation='3.0 0.0 1.0'>
6.   <Shape DEF="mySphere">
7.    <Sphere radius='2.3'/>
8.     <Appearance>
9.      <Material diffuseColor='1.0 0.0 0.0'/>
10.    </Appearance>
11.   </Shape>
12. </Transform>
13. </Scene>
```

(b) NCL document defining

```xml
1. <media id="mySceneObj" src="myScene.x3d">
2.  <area id="mySphereAnchor" label="mySphere"/>
3. ...
4. </media>
```

Web 3D 2012, Los Angeles
Embedding X3D Objects into NCL Documents

- Property anchors definition:
 - Allows us to bind internal property of an X3D object for NCL properties.

```xml
6. ...  
7. <Shape>  
6. <Sphere radius='2.3'/>  
7. <Appearance>  
8. <Material DEF="myMaterial" diffuseColor='1.0 0.0 0.0'/>  
10. </Appearance>  
11. </Shape>  
12. ...
```

(a) X3D document (myScene.x3d)

```xml
1. <media id="mySceneObj" src="myScene.x3d">  
2. <property name="myMaterial#diffuseColor" />  
3. ...  
4. </media>  
```

(b) NCL Document embedding X3D
Extending NCL Events

• Currently, events supported by NCL are:
 – Presentation
 – Selection
 – Attribution

• New 3D-Related events
 – Proximity
 – Collision
 – Visibility
Some Possibilities (1)

Scene graph object

onBegin

Start

A 2D Object
Scene graph object

A 2D Object

onBegin

Start

Some Possibilities (2)
Some Possibilities (3)

Scene graph object

onCollision

Start

A 2D Object

Web 3D 2012, Los Angeles
Some Possibilities (3)

Scene graph object

onSelection

set
Some Possibilities (4)

Scene graph object

Scene graph object 2

set

onProximity

start

Web 3D 2012, Los Angeles
Implementation

• Our current implementation is based on:
 – Ginga-NCL Reference Implementation (http://www.gingancl.org.br)

 – Simple 3D Objects:
 • We have developed our own Wavefront OBJ player

 – Composite 3D objects:
 • We have integrated FreeWRL (http://freewrl.sourceforge.net)
Implementation

- FreeWRL integration
 - A new player to Ginga-NCL that wraps FreeWRL to follow the Players APIs.
 - EAI (External Application Interface) to make the communication with internal structures of X3D.
Some working in progress...
Conclusions

• We can improve some kinds of Digital TV application by embedding 3D objects.
• Embedding X3D content into NCL allows us also to control the behavior of the whole X3D scene.
• Multiple devices integration is a good way to improve usability of the 3D applications for digital TV.
Future Work

- Usability tests with other inputs for TV.
- Finishing the integration of FreeWRL as secondary device.
- Integration of a BIFS player (also based on Scene Graph) as a new type of media supported.
- Comparison of the integration of NCL Links modules inside X3D, as an alternative to route graphs.
- We hope to help in the specification of the new NCL version (4.0).
Some Credits

• Ginga-NCL Community:
 http://www.softwarepublico.gov.br

• FreeWRL Community:
 http://freewrl.sourceforge.net

• Savage X3D Examples Archive:
 https://savage.nps.edu/Savage/
Thank you!!

Any Question?

Contact-us:
robertogerson@telemidia.puc-rio.br
http://www.telemidia.puc-rio.br
http://www.ginga.org.br