3DNSITE: A networked interactive 3D visualization system to simplify location awareness in crisis management

Giovanni Pintore¹, Enrico Gobbetti¹, Fabio Ganovelli² and Paolo Brivio²

1 CRS4 Visual Computing Group, Sardinia Italy
2 ISTI CNR Visual Computing Laboratory, Pisa Italy

Web3D 2012 - Los Angeles, August 2012
Context and motivations 1/2

- **New crisis of growing complexity**
 - The typical modern scenario
 - Dense population concentration
 - Complex architectural environment
 - Essential for public authorities to adopt proper decision support tools and crisis simulation systems

- **New collaborative approaches and technologies are researched in the IT**
 - Emergency operations handling
 - Agents, crisis managers training
 - Emergency procedures planning
Context and motivations 2/2

- **Complex scenario**
 - Important to simplify location awareness and remote navigation
 - Exploration of the near-3D data

- **Important data for the security domain**
 - Combination of detailed 3D model of the site with georeferenced aligned 2D images
 - Data sometimes already available or easy to acquire/update
 - *Eg. SfM pipeline: cheap to acquire and update, no specific hardware is needed*
3DNSITE system introduction

- **Client-server 3D visualization tool**
 - Streaming and visualizing large tridimensional hybrid data
 - 3D point-clouds or meshes
 - Related aligned images projected on the model

- **Included in a general training and decision framework for emergency operations**
 - Indigo system
 - Evaluated with real-world datasets and real users
Challenges

• Efficient and scalable distribution and visualization of the data
 – Different capabilities devices
 – Different performances networks

• Interactive frame-rates
 – Huge 2D/3D data (hundreds of images, massive 3D models coming from different sources, etc.)

• Fast and efficient navigation interface
 – Users not skilled with VR and 3D objects interaction
Related work 1/2

- Several solutions have been presented for maps browsing, 3D mobile navigation, etc.

- ...but only a few existing browsers support the joint navigation of mixed 2D/3D datasets
 - PhotoTourism [Snavely et al. 06] - PhotoSynth [Microsoft 07]
 - [Snavely et al. 08], [Vincent et al. 07], [Kopf et al. 10], [Goesele et al. 10]
Related work 2/2

• Our contribution
 – Unlike the mentioned 3D photo browsers our system exploits state-of-the-art multi-resolution representations of the 3D model
 • Huge 3D massive models can be streamed and visualized
 • Scalability over limited hardware and network resources
 • Free-point-of-view navigation at interactive frame rates
 • Based on **Adaptive Tetra-puzzles** [Cignoni et al. 04] and **Layered Point Clouds** [Gobbetti et al. 04]

 – View-dependent/output-sensitive method applied to the image cache controller
 • Combined with pre-computed 6D descriptors for the images supports a fast and efficient navigation interface
 • Completing the system scalability

 – Combination, enhancement and application of SoA methods in a peculiar web-based environment
 • Very positive feedback in terms of performance and user experience
Method: output-sensitive philosophy

- **We assume less data on screen** (N) **than in model** ($K >> N$)
 - Real-time data filtering problem
 - Best visualization at interactive frame-rates

- **We adopt this philosophy to access** the 3D model, the embedded images and for the user interface

![Diagram](image)

- **Limited bandwidth**
 (network/disk/RAM/CPU/PCIe/GPU/...)

- **Screen**
 - 10-100 Hz
 - $O(N=1M-100M)$ pixels

- **Storage**
 - $O(K=unbounded)$ bytes (triangles, points, ...)

- **View parameters, priority, etc.**
System overview

- Server side pre-processing
- Data distribution
- Client side 3D navigation
Server side pre-processing 1/2

Input data
- 3D models and related aligned images
 - SfM pipelines [Snavely 06]
 - Images to 3D alignment tools
 - GPS records

3D model out-of-core pre-processing
- A MR hierarchy over the samples is generated
 - reordering and clustering in fixed size patches
- The hierarchical structure is split in a index tree and a point cloud (or triangles) repository
- Dependencies between mesh modifications arranged in a DAG
- Variable resolution representations of the model are obtained performing a *cut* of the DAG

\[D^* = D_0 \oplus g_1 \oplus g_4 = f_{0\infty} \cup f_{02} \cup f_{03} \cup f_{13} \cup f_{1\infty} \cup f_{4\infty} \]
Server side pre-processing 2/2

- **Images out-of-core pre-processing**
 - An image depth is computed using the related 3D model depth buffer
 - A 6D descriptor is computed for each image as a weighted average (customizable) of:
 - Time of shot / Shot position / Shot orientation / Image color distribution / Spatial color layout / Image depth
 - **Image ordering and priority among images are pre-computed from these descriptors**

- **Geographical spatial reference frame**
 - RANSAC method comparing image data (GPS, exif, etc.) with the estimated 3D positions

- **The geo-referenced 3D model is a kind of “skeleton” where pre-existent and new images are embedded**
Data distribution 1/2

- **3D model and images repositories are stored in a server**
- **Priority-based/multilevel cache system**
 - 3 levels: http, (disk), RAM, GPU
 - 2 basic cache instances (3D model and images)
 - Different thread for each level (e.g., blocking files and sockets)
 - Fixed size budget for each level (e.g., RAM memory budget 50% of the system memory, etc.)
Data distribution 2/2

- **3D data data blocks stored as VBO**
 - VBO downloaded and rendered according with the current view parameters
 - GPU memory optimization
 - http persistent connection
 - Improves bandwidth usage and reduces network latency

- **Images stored as JPG**
 - Pre-computed priority-based respect to the current image
 - Good compression
 - Wide compatibility with different devices
Client: mixed 2D-3D navigation 1/3

- **3D model rendering**
 - Model rendered as a kind of scenario “skeleton”
 - Performing real-time:
 - Selective (view-dependent) queries on the multi-resolution repository
 - Rendering by assembling and refining fixed size patches (thousands triangles/points)
 - Caching enables rendering with a single CPU call
 - Interactive frame-rate achieved
Client: mixed 2D-3D navigation 2/3

- **Images rendering**
 - Loading from network according with:
 - Current viewport
 - Image descriptor differences
 - Hardware capabilities
 - Images projected simulating their real shot parameters
 - Viewport parameters
 - Pre-computed depth
 - Focus on the real image appearance
 - Projection mode suggested by the system end-users
Client: mixed 2D-3D navigation 3/3

- **User interface**
 - 3D navigation
 - 2D image browser
 - Geo-minimap

- **Click-and-go**
 - According with the 6D image descriptors
 - Suggested images rendered according their 6D proximity with the current one
 - Free-point-of-view navigation

Interactive 3D navigation over the gas storage site of Geomethane in Manosque (France).
Results 1/3

- **Part of the Indigo framework**
 - “Innovative Training & Decision Support for Emergency operations”
 - Distributed architecture to simultaneous involve multiple actors
 - 3DNSITE integrates the global Indigo map capabilities adding a detailed, realistic and interactive 3D navigation for specific operational sites
 - Real end-uses and crisis managers involved
Results 2/3

- **Pre-processor module**
 - Data from SfM pipelines / In-house technology for 2D-3D alignment [Pintus et al. 11b]

<table>
<thead>
<tr>
<th>dataset</th>
<th>3D model</th>
<th>images</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSamples</td>
<td>Patches</td>
<td>Time</td>
</tr>
<tr>
<td>Geomethane 1.2GB</td>
<td>7.5</td>
<td>464</td>
<td>2m23s</td>
</tr>
<tr>
<td>Training building 151MB</td>
<td>0.5</td>
<td>32</td>
<td>11s</td>
</tr>
<tr>
<td>Stockholm Tegelbacken 457MB</td>
<td>1.5</td>
<td>196</td>
<td>59s</td>
</tr>
</tbody>
</table>

Dominant value for the real cases is the shot position – For the training area is instead the shot direction
Results 3/3

<table>
<thead>
<tr>
<th>User</th>
<th>Hardware performance</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device</td>
<td>Multires fps</td>
</tr>
<tr>
<td>Manager1</td>
<td>whiteboard</td>
<td>172</td>
</tr>
<tr>
<td>Manager2</td>
<td>laptop</td>
<td>70</td>
</tr>
<tr>
<td>Manager3</td>
<td>netbook</td>
<td>35</td>
</tr>
<tr>
<td>Agent1</td>
<td>netbook</td>
<td>26</td>
</tr>
<tr>
<td>Agent2</td>
<td>tablet</td>
<td>26</td>
</tr>
<tr>
<td>Agent5</td>
<td>tablet</td>
<td>19</td>
</tr>
<tr>
<td>Agent6</td>
<td>tablet</td>
<td>8</td>
</tr>
</tbody>
</table>

- **Client module**
 - Developed on the users profile (agents and managers)
 - Tested by real users
 - Scalability increase in importance for remote/tablet applications
Conclusions

- **Web-based system to interactively navigate a complex 3D environment during the evolution/simulation of a crisis**
- **Output-sensitive philosophy**
 - Combination and enhancement of already presented SoA methods in a web-based/crisis environment
 - It achieves scalability over limited network and hardware resources
 - It preserves a good interactivity
 - Integrated in the Indigo framework
 - Very positive performance measurements
 - Very positive user experience
- **Limitations and future work**
 - Dynamic dataset
 - 3D model
 - Images
 - Other data
 - Images streaming
Questions and contacts

- **CRS4 - Visual Computing Group**
 http://vic.crs4.it

- **ISTI-CNR - Visual Computing Lab**
 http://vcg.isti.cnr.it

- **Speaker: Giovanni Pintore**
 gianni@crs4.it

- **The Indigo project**
 http://indigo-project.eu/
 This research is partially supported by EU FP7
 Security Research grant 242341